Elastic properties and strain-to-crack-initiation of calcium phosphate bone cements: Revelations of a high-resolution measurement technique.
نویسندگان
چکیده
Calcium phosphate cements (CPCs) should ideally have mechanical properties similar to those of the bone tissue the material is used to replace or repair. Usually, the compressive strength of the CPCs is reported and, more rarely, the elastic modulus. Conversely, scarce or no data are available on Poisson's ratio and strain-to-crack-initiation. This is unfortunate, as data on the elastic response is key to, e.g., numerical model accuracy. In this study, the compressive behaviour of brushite, monetite and apatite cements was fully characterised. Measurement of the surface strains was done using a digital image correlation (DIC) technique, and compared to results obtained with the commonly used built-in displacement measurement of the materials testers. The collected data showed that the use of fixed compression platens, as opposed to spherically seated ones, may in some cases underestimate the compressive strength by up to 40%. Also, the built-in measurements may underestimate the elastic modulus by up to 62% as compared to DIC measurements. Using DIC, the brushite cement was found to be much stiffer (24.3 ± 2.3GPa) than the apatite (13.5 ± 1.6GPa) and monetite (7.1 ± 1.0GPa) cements, and elastic moduli were inversely related to the porosity of the materials. Poisson's ratio was determined to be 0.26 ± 0.02 for brushite, 0.21 ± 0.02 for apatite and 0.20 ± 0.03 for monetite. All investigated CPCs showed low strain-to-crack-initiation (0.17-0.19%). In summary, the elastic modulus of CPCs is substantially higher than previously reported and it is concluded that an accurate procedure is a prerequisite in order to properly compare the mechanical properties of different CPC formulations. It is recommended to use spherically seated platens and measuring the strain at a relevant resolution and on the specimen surface.
منابع مشابه
Investigation of Macroporous Calcium Phosphate Cement Obtained by Foamed Gelatin Polymer
This study deals with the effect of gelatin on physical and mechanical properties of calcium phosphate bone cements. The mixture of tetracalcium phosphate (TTCP) and dicalcium phosphate (DCPA) as the cement powder was mixed with 6 wt% Na2HPO4 solution containing different amount (0, 2, 5 and 8% in w/w) of foamed gelatin as liquid phase. The physical properties were determined in the terms of s...
متن کاملEffect of Graphene Oxide Nanoparticles Addition on Mechanical and Biological Properties of Calcium Phosphate Cement
In the present study, we have evaluated the effects of graphene oxide (GO) addition on the physical-mechanical-biological properties of calcium phosphate cement (CPC). The in vitro cellular responses of MG63 and in vivo tissue responses after the implantation of CPC/GO in parietal bone defects of wistar rats were also investigated. The brushite calcium phosphate cements were prepared by mixi...
متن کاملCement-Implant Interface Fracture Failure by Crack Initiation Due to Interface Cavity Stress Concentration
Nowadays total joint replacements are widely used in the world, so in average 800,000 joint surgeries are done yearly only in Europe and North America. However implant loosening is and remains as the major issue of all implant failures and therefore causes revision surgery procedures. Studies and experiments have identified poor fixation of implants most likely is the main cause of long term im...
متن کاملCRYSTALLIZATION AND SINTERABILITY BEHAVIOR OF BIORESORBABLE CaO-P2O5-Na2O-TiO2 GLASS CERAMICS FOR BONE REGENERATION APPLICATION
Abstract:Some types of glass and glass ceramics have a great potential for making bone tissue engineering scaffolds, drug carrier and bone cements as they can bond to host bone, stimulate bone cells toward osteogenesis, and resorb at the same time as the bone is repaired. Calcium phosphate glass ceramics have very attractive properties that allow them to use in bone tissue engineering. Calcium ...
متن کاملCan Bone Void Fillers Carry Load? Behaviour of Calcium Phosphate Cements Under Different Loading Scenarios
Ajaxon, I. 2017. Can Bone Void Fillers Carry Load? Behaviour of Calcium Phosphate Cements Under Different Loading Scenarios. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1492. 67 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9865-8. Calcium phosphate cements (CPCs) are used as bone void fillers and as complements to hardware ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 74 شماره
صفحات -
تاریخ انتشار 2017